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Overview

¢ In continual learning, systems learn from non-stationary data streams or
batches without catastrophic forgetting.

¢ Continual learning has been heavily studied for supervised classification
and reinforcement learning, but not yet for abstract reasoning tasks.

¢ Here, we study continual learning of analogical reasoning using Raven’s
Progressive Matrices (RPMs).

* We establish experimental baselines, protocols, and forward and
backward transfer metrics to evaluate models.

* We employ experience replay to mitigate catastrophic forgetting and
demonstrate that selective replay can significantly outperform random
selection for the RPM task.

Problem Formulation
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Selective Replay Enhances Learning in Online Continual
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Experimental Setup

** We use the RAVEN dataset, which contains 1.12 million images with 70k questions.

** RAVEN is divided into 7 unique tasks. We require models to learn one task at a time either

as a whole (batch) or one question at a time (stream).
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Experimental Results
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Code Available

https://github.com/tyler-hayes/Continual-Analogical-Reasoning

Models & Baselines

* We extend the Rel-Base model to the continual learning setting. Rel-Base
processes image frames independently before passing them to a sequence
encoder to extract relationships and provide score predictions.

»» Distillation optimizes a classification and distillation loss, where soft targets
are computed as the scores of the model from the previous time-step.

s EWC uses a quadratic regularization term to encourage weights to remain
close to their previous values.

+»* Partial Replay fine-tunes on all new data and a subset of previous data.

*** We study seven policies for choosing which samples to replay:
random, minimum logit distance, minimum confidence, minimum
margin, maximum loss, maximum time since last replay, and
minimum replays.

** We study the policies in both balanced and unbalanced settings.

** Fine-Tune (lower bound) does not use any mechanisms to mitigate
catastrophic forgetting.

¢ Cumulative Replay fine-tunes a model with all new and old data.

»» Offline (upper bound) is a conventional network trained offline on all data.

Summary
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* Replay-based learners perform the best for continually solving RPM puzzles.

» Selectively choosing which samples to replay can vyield statistically
significant performance improvements over uniform random sampling.
This is interesting as selective replay for image classification has yielded
marginal benefits.

¢ Future work consists of designing and testing more sophisticated network

architectures and continual learning strategies for analogical reasoning.
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