

Rochester **Institute of** Technology

Memory Efficient Experience Replay for Streaming Learning

Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan Rochester Institute of Technology, Rochester NY {tlh6792,ndcsma,kanan}@rit.edu

Overview

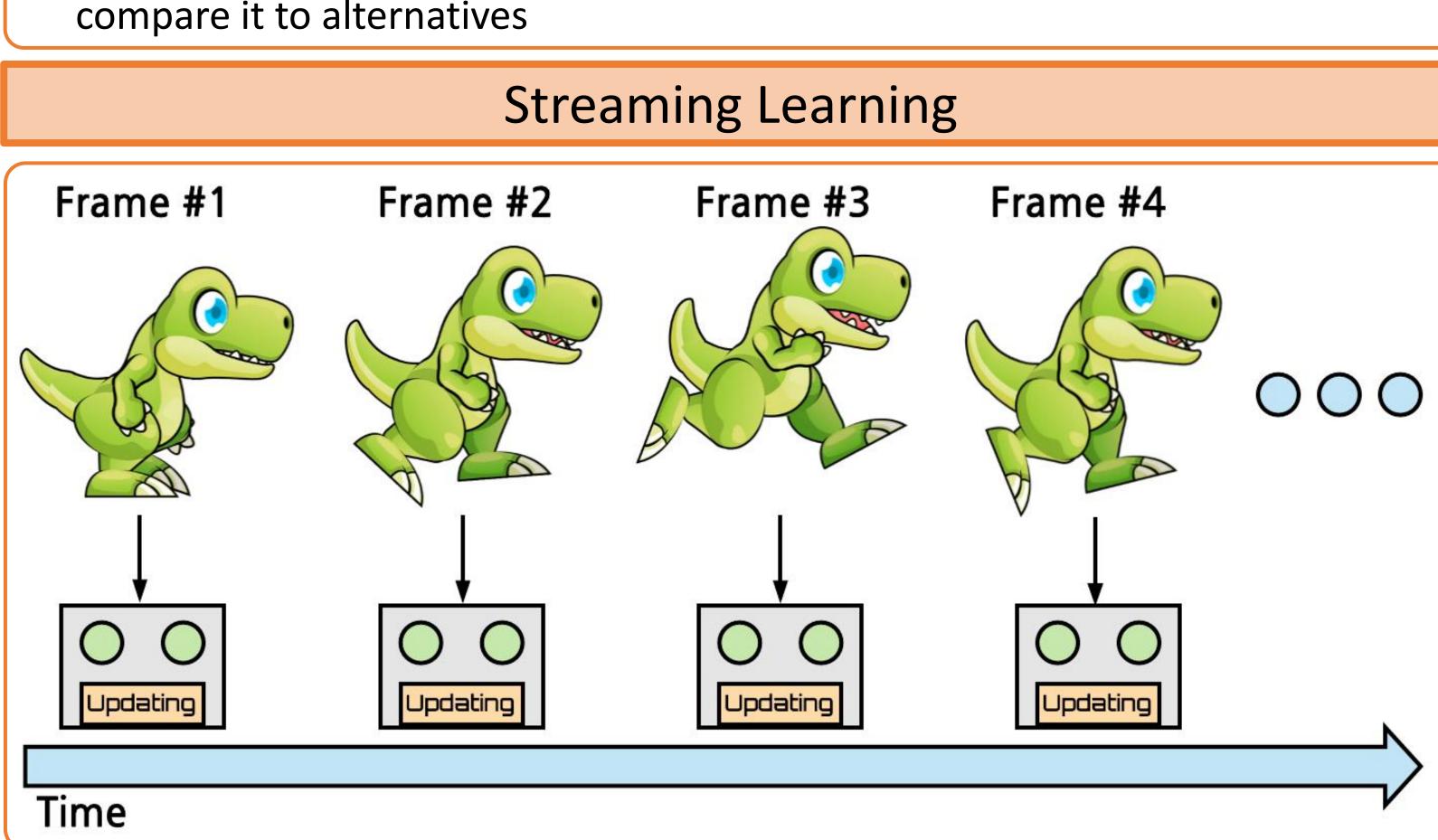
- Agents often operate in changing environments and must quickly learn new things from data streams
- In streaming learning, a learner is trained online, in a single pass, from a data stream that may not be independent and identically distributed (iid)
- Deep Neural Networks (DNNs) fail in this paradigm since they require multiple passes through a dataset and non-iid data causes catastrophic forgetting
- * **Rehearsal** fixes these issues by mixing new examples with all previous data and updating the DNN using this mixture, which is slow and memory intensive
- We introduce **ExStream**, a memory efficient rehearsal scheme, and

Streaming Learning Paradigms

- iid Ordered data stream is randomly shuffled
- Class iid Ordered data stream is organized by class Instance Ordered – data stream is temporally ordered by object instances
- Class Instance Ordered data stream is temporally ordered by object instances by class

Datasets

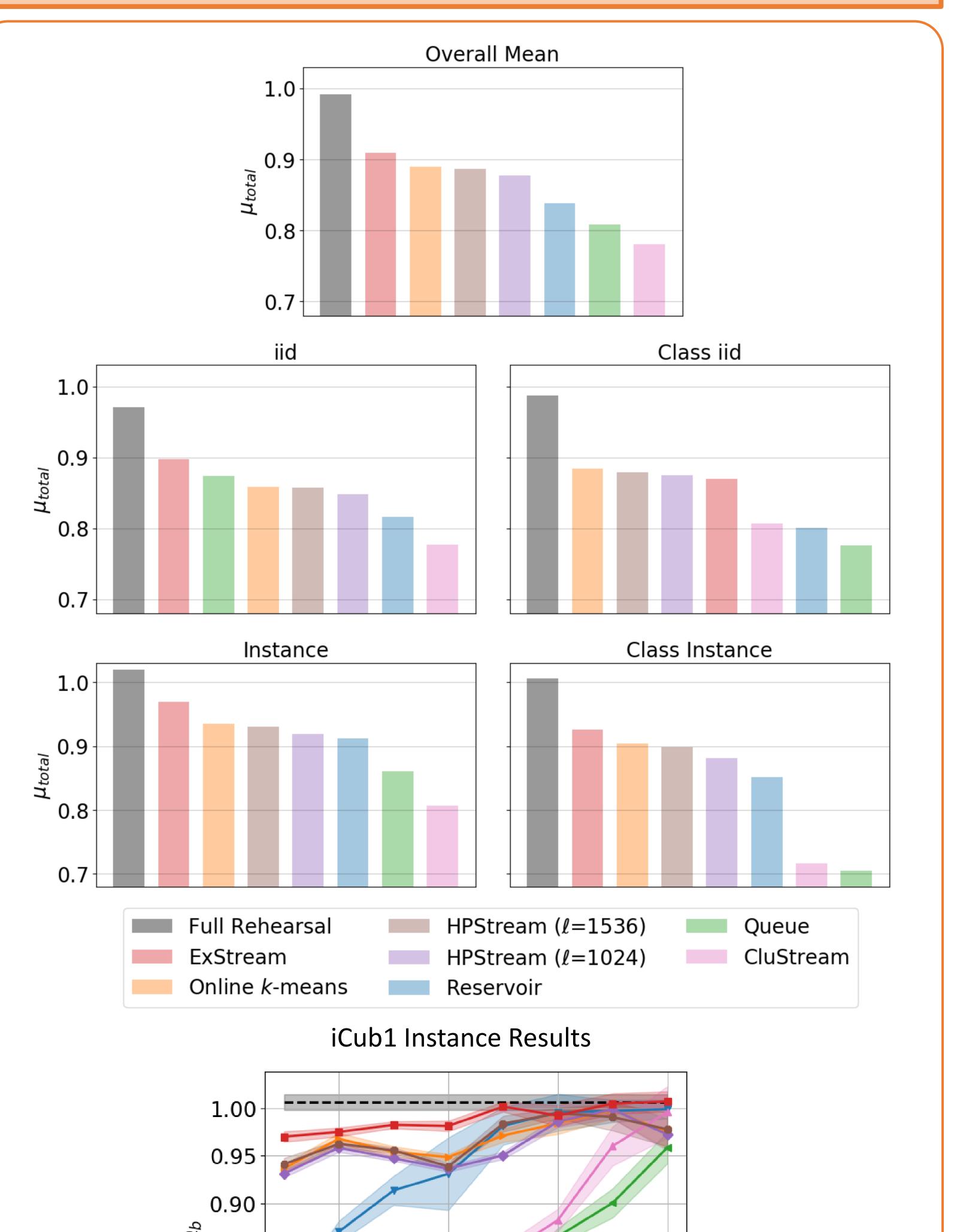
	iCub1	CORe50	CUB-200
Туре	Streaming	Streaming	Standard Obj. Rec.
Classes	10	10	200
Feature Shape	2,048	2,048	2,048
Train Samples	6,002	5,943	5,994
Test Samples	2,001	2,232	5,794
Train Samples/Class	600-602	591-600	29-30
Test Samples/Class	200-201	221-225	11-30
Buffer Sizes	$\{2^1, 2^2, \cdots, 2^8\}$	$\{2^1, 2^2, \cdots, 2^8\}$	$\{2^1, 2^2, \cdots, 2^4\}$



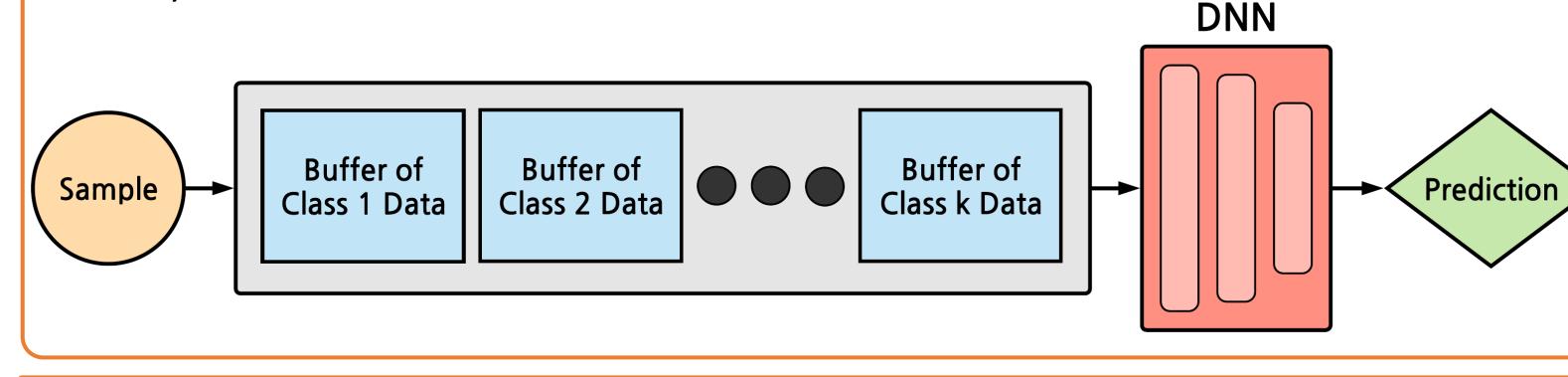
Memory Efficient Rehearsal

Full rehearsal mixes all older examples with new examples to be learned This is not a workable solution for embedded robots deployed for a long time

Experimental Results



- We make rehearsal memory efficient, by having K class-specific buffers, each containing at most b prototypes
- The buffers are updated in a streaming fashion and used to update (finetune) a DNN for classification



Models

Stream Clustering Buffers:

- ***** *ExStream* Always store new point and merge two closest clusters
- Online k-means Always merge new point with closest cluster
- CluStream Find closest cluster to new point. If point is within maximum *boundary* of that cluster then merge point in, else create new cluster
- * HPStream Find closest cluster to new point using projected distance for high-dimensional data. If point is within *limiting radius* of that cluster then merge point in, else create new cluster

Replacement Buffers:

* *Reservoir Sampling* – Randomly replace existing point with new point

• Queue – Replace oldest point with new point

Baselines:

* No Buffer – Train DNN sample by sample with single pass through dataset Full Rehearsal – Store all training data and fine-tune DNN

• Offline DNN – Conventional offline DNN trained from scratch on all data

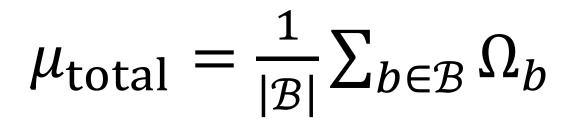
Metrics

 \clubsuit We compute the performance of each method over a set of buffer sizes \mathcal{B} Performance is normalized to an offline baseline and usually in [0, 1]

Performance for $b \in \mathcal{B}$:

$$\Omega_b = \frac{1}{T} \sum_{t=1}^{T} \frac{\alpha_t}{\alpha_{\text{offline},t}}$$

Performance for
$$\mathcal{B}$$
:



Summary

* We demonstrated the **effectiveness of rehearsal** for mitigating catastrophic forgetting during streaming learning with DNNs

*We showed that rehearsal can be done in a **memory efficient** way by introducing the **ExStream algorithm** and demonstrating its efficacy on multiple orderings of high-resolution datasets

Acknowledgements:

We thank DARPA L2M and the US NRL for financially supporting this research.