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s* Agents must be capable of learning and using information immediately.

** Deep neural networks (DNNs) are widely used for perception tasks, but if
they are updated on changing data distributions, they catastrophically
forget previous knowledge.

** Streaming learning requires agents to learn from non-independent and
identically distributed (iid) data streams in real-time, i.e., one example at a
time and a single pass through the dataset.

** Deep Streaming Linear Discriminant Analysis (SLDA) trains the output layer
of a convolutional neural network (CNN) incrementally.

** SLDA outperforms recent incremental batch and streaming models with
fewer memory and computational costs.

*»* iid: data stream is randomly shuffled.

¢ Class iid: data stream is organized by class.

*»* Instance: data stream is temporally ordered by object instances.

** Class Instance: data stream is temporally ordered by object instances by
class.
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Incremental Batch Learning
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Batch Training
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Streaming Learning
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Deep Streaming Linear Discriminant Analysis

¢ SLDA stores a running mean per class (u;) and a tied covariance matrix ().

“» We compute the precision matrix A = [(1 — €)X + el]™ 1.

*»* Predictions are made by assigning to an input embedding z; the label of the
closest Gaussian in feature space using the stored means and covariance:

~ 1
Yt = algdX [(A.uk)TZt —5 (Wi - A.Uk)]-

Experimental Evaluation

*** ImageNet-1K: Popular large-scale image classification dataset (1,000 classes).
** CORe50: Streaming dataset containing video sequences of 10 different object
categories. Temporal dependences are natural for streaming.
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a; = accuracy of streaming learner at time ¢
Ooffline t = accuracy of offline model at time ¢

Comparison Models
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** We compare several models with the ResNet-18 CNN:

*** Deep SLDA: Two variants: a fixed covariance and a plastic covariance.

** ExStream: Streaming learner that uses partial rehearsal and clustering.

**iCaRL: Popular incremental batch model that stores images for replay and
uses distillation loss. Uses nearest class mean classifier.

** End-to-End: State-of-the-art incremental batch model on ImageNet-1K.
Stores images for replay and uses distillation like iCaRL. Uses the CNN for
classification and uses multiple augmentation techniques.

»» Offline: Optimized offline learner. An upper bound on performance.
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ImageNet-1K Results
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**SLDA is popular in the data mining community but has not been used 1
recently for large classification datasets.

*We combine SLDA with a CNN and exceed incremental batch learning
models, while being much more lightweight.

s* Our offline results suggest greater performance is achievable by training
hidden layers, but we urge future developers to test only training the output
layer to ensure gains are being realized.
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