

Can I see an Example? Active Learning the Long Tail of Attributes and Relations

Tyler L. Hayes, Maximilian Nickel, Christopher Kanan, Ludovic Denoyer, & Arthur Szlam

Code Available
https://github.com/tyler-

hayes/Can-I-See-An-Example

Overall Results

- ✓ QBCat-Tail has *strong performance on tail data* without sacrificing performance on the natural data distribution
- ✓ QBCat-Tail outperforms all baselines
- ✓ Performance differences among conventional active learners are *minimal*

Summary

- We introduced the Query-by-Category framework to train agents to predict objects, predicates, and attributes in visual scenes
- ❖ We introduced a simple yet effective active sampling approach (QBCat-Tail) that asks for examples from tail classes
- We demonstrated the effectiveness of QBCat-Tail on the Visual Genome dataset compared to active learning baselines

Acknowledgements:

TH and CK were supported in part by the DARPA/SRI Lifelong Learning Machines program [HR0011-18-C-0051], NSF award #1909696, and NSF award #2047556.

Overview

- An agent could better understand a scene by asking questions about particular objects, attributes, or relationships in a scene
- ❖ We introduce an active learning framework allowing agents to ask questions at the **category level** instead of the example level
- Challenge: The distribution of attributes and relations in the natural world is long-tailed, causing overfitting
 - Problem is exacerbated in active learning settings
- Goal: Train an agent to better understand visual scenes while minimizing the number of questions it asks an annotator

Query-by-Category (QBCat) Framework

Model Architecture

- ❖ We perform **Visual Triple Completion** where an agent is provided with two elements in a triple, and it must predict the missing element
- We use a Neighborhood Component Analysis Loss (Metric Learning) for training

Experimental Setup

- We propose the QBCat-Tail active sampling method that selects data from tail classes uniformly at random
- We compare QBCat-Tail to four conventional active learning baselines: Random, Confidence, Entropy, and Margin
- * We perform incremental active learning over 10 increments
- ❖ We compare performance on the **Visual Genome** dataset using a **full test set** and a **tail test set**

Incremental Results

